Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 192(2): 1168-1182, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36960567

RESUMO

Rice (Oryza sativa) is of paramount importance for global nutrition, supplying at least 20% of global calories. However, water scarcity and increased drought severity are anticipated to reduce rice yields globally. We explored stomatal developmental genetics as a mechanism for improving drought resilience in rice while maintaining yield under climate stress. CRISPR/Cas9-mediated knockouts of the positive regulator of stomatal development STOMAGEN and its paralog EPIDERMAL PATTERNING FACTOR-LIKE10 (EPFL10) yielded lines with ∼25% and 80% of wild-type stomatal density, respectively. epfl10 lines with moderate reductions in stomatal density were able to conserve water to similar extents as stomagen lines but did not suffer from the concomitant reductions in stomatal conductance, carbon assimilation, or thermoregulation observed in stomagen knockouts. Moderate reductions in stomatal density achieved by editing EPFL10 present a climate-adaptive approach for safeguarding yield in rice. Editing the paralog of STOMAGEN in other species may provide a means for tuning stomatal density in agriculturally important crops beyond rice.


Assuntos
Oryza , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Resistência à Seca , Fotossíntese/genética , Secas
2.
Nat Commun ; 14(1): 539, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725858

RESUMO

Wheat, an essential crop for global food security, is well adapted to a wide variety of soils. However, the gene networks shaping different root architectures remain poorly understood. We report here that dosage differences in a cluster of monocot-specific 12-OXOPHYTODIENOATE REDUCTASE genes from subfamily III (OPRIII) modulate key differences in wheat root architecture, which are associated with grain yield under water-limited conditions. Wheat plants with loss-of-function mutations in OPRIII show longer seminal roots, whereas increased OPRIII dosage or transgenic over-expression result in reduced seminal root growth, precocious development of lateral roots and increased jasmonic acid (JA and JA-Ile). Pharmacological inhibition of JA-biosynthesis abolishes root length differences, consistent with a JA-mediated mechanism. Transcriptome analyses of transgenic and wild-type lines show significant enriched JA-biosynthetic and reactive oxygen species (ROS) pathways, which parallel changes in ROS distribution. OPRIII genes provide a useful entry point to engineer root architecture in wheat and other cereals.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Raízes de Plantas , Raízes de Plantas/metabolismo , Triticum/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo
3.
Genes (Basel) ; 13(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35885963

RESUMO

Discovery of the CRISPR-Cas9 gene editing system revolutionized the field of plant genomics. Despite advantages in the ease of designing gRNA and the low cost of the CRISPR-Cas9 system, there are still hurdles to overcome in low mutation efficiencies, specifically in hexaploid wheat. In conjunction with gene delivery and transformation frequency, the mutation efficiency bottleneck has the potential to slow down advancements in genomic editing of wheat. In this study, nine bombardment parameter combinations using three gold particle sizes and three rupture disk pressures were tested to establish optimal stable transformation frequencies in wheat. Utilizing the best transformation protocol and a knockout cassette of the phytoene desaturase gene, we subjected transformed embryos to four temperature treatments and compared mutation efficiencies. The use of 0.6 µm gold particles for bombardment increased transformation frequencies across all delivery pressures. A heat treatment of 34 °C for 24 h resulted in the highest mutation efficiency with no or minimal reduction in transformation frequency. The 34 °C treatment produced two M0 mutant events with albino phenotypes, requiring biallelic mutations in all three genomes of hexaploid wheat. Utilizing optimal transformation and heat treatment parameters greatly increases mutation efficiency and can help advance research efforts in wheat genomics.


Assuntos
Biolística , Triticum , Biolística/métodos , Sistemas CRISPR-Cas/genética , Genômica , Ouro , Mutação , Triticum/genética
4.
Front Plant Sci ; 13: 1084700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704157

RESUMO

The advancement of precision engineering for crop trait improvement is important in the face of rapid population growth, climate change, and disease. To this end, targeted double-stranded break technology using RNA-guided Cas9 has been adopted widely for genome editing in plants. Agrobacterium or particle bombardment-based delivery of plasmids encoding Cas9 and guide RNA (gRNA) is common, but requires optimization of expression and often results in random integration of plasmid DNA into the plant genome. Recent advances have described gene editing by the delivery of Cas9 and gRNA as pre-assembled ribonucleoproteins (RNPs) into various plant tissues, but with moderate efficiency in resulting regenerated plants. In this report we describe significant improvements to Cas9-RNP mediated gene editing in wheat. We demonstrate that Cas9-RNP assays in protoplasts are a fast and effective tool for rational selection of optimal gRNAs for gene editing in regenerable immature embryos (IEs), and that high temperature treatment enhances gene editing rates in both tissue types. We also show that Cas9-mediated editing persists for at least 14 days in gold particle bombarded wheat IEs. The regenerated edited wheat plants in this work are recovered at high rates in the absence of exogenous DNA and selection. With this method, we produce knockouts of a set of three homoeologous genes and two pathogenic effector susceptibility genes, engineering insensitivity to corresponding necrotrophic effectors produced by Parastagonospora nodorum. The establishment of highly efficient, exogenous DNA-free gene editing technology holds promise for accelerated trait diversity production in an expansive array of crops.

5.
Plant Methods ; 16(1): 151, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33292393

RESUMO

BACKGROUND: An efficient in vivo transient transfection system using protoplasts is an important tool to study gene expression, metabolic pathways, and multiple mutagenesis parameters in plants. Although rice protoplasts can be isolated from germinated seedlings or cell suspension culture, preparation of those donor tissues can be inefficient, time-consuming, and laborious. Additionally, the lengthy process of protoplast isolation and transfection needs to be completed in a single day. RESULTS: Here we report a protocol for the isolation of protoplasts directly from rice calli, without using seedlings or suspension culture. The method is developed to employ discretionary pause points during protoplast isolation and before transfection. Protoplasts maintained within a sucrose cushion partway through isolation, for completion on a subsequent day, per the first pause point, are referred to as S protoplasts. Fully isolated protoplasts maintained in MMG solution for transfection on a subsequent day, per the second pause point, are referred to as M protoplasts. Both S and M protoplasts, 1 day after initiation of protoplast isolation, had minimal loss of viability and transfection efficiency compared to protoplasts 0 days after isolation. S protoplast viability decreases at a lower rate over time than that of M protoplasts and can be used with added flexibility for transient transfection assays and time-course experiments. The protoplasts produced by this method are competent for transfection of both plasmids and ribonucleoproteins (RNPs). Cas9 RNPs were used to demonstrate the utility of these protoplasts to assay genome editing in vivo. CONCLUSION: The current study describes a highly effective and accessible method to isolate protoplasts from callus tissue induced from rice seeds. This method utilizes donor materials that are resource-efficient and easy to propagate, permits convenience via pause points, and allows for flexible transfection days after protoplast isolation. It provides an advantageous and useful platform for a variety of in vivo transient transfection studies in rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...